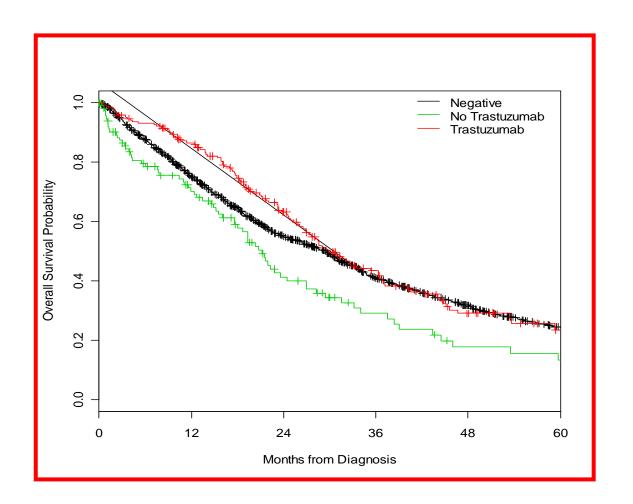
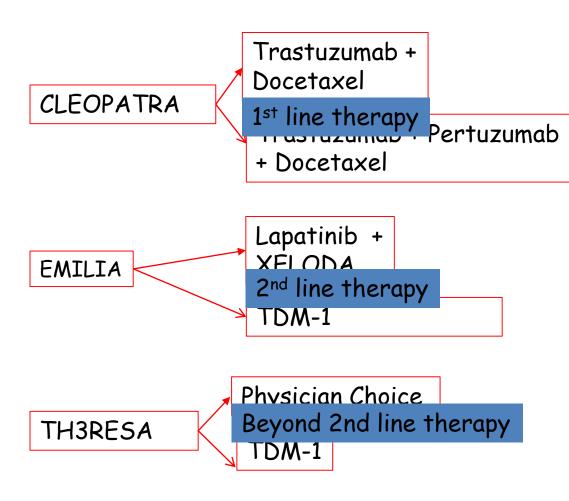

Evolving Strategies to Overcome Resistance to HER2 Targeted Agents

Sung-Bae Kim, MD, PhD
Professor, Dept of Oncology
Asan Medical Center
University of Ulsan College of Medicine
Seoul, Korea

Advanced HER2+ Breast Cancer: What have we accomplished?



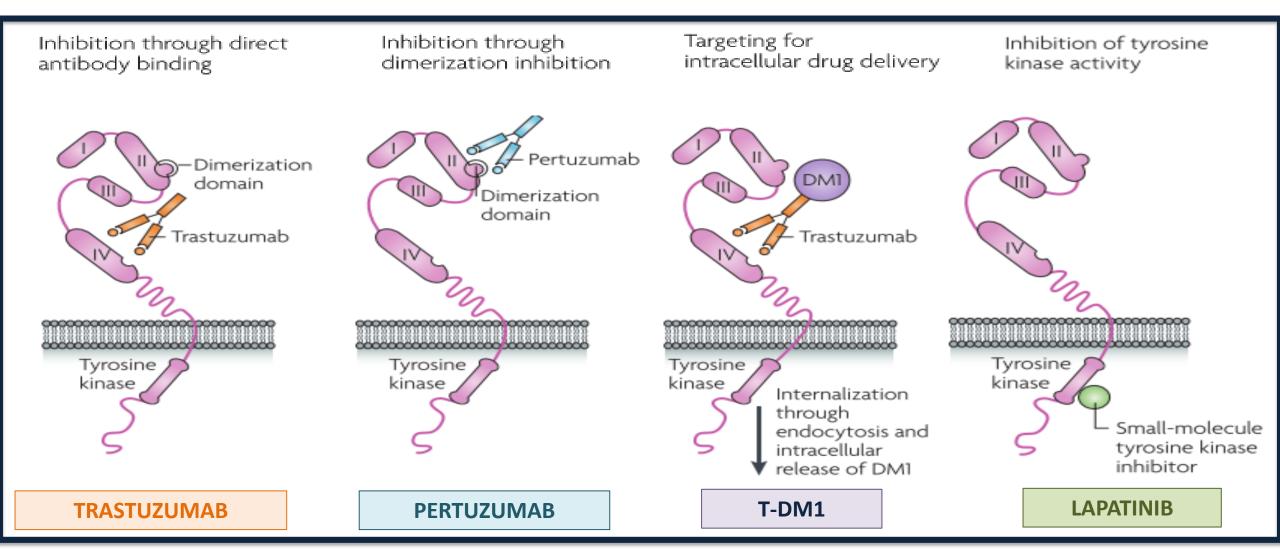
Analysis Year	Expected: 5-Year Survival (%)	Expected: Mean Per-Patient Survival (Months)
1995	9.1%	26.6
2000	10.9%	28.7
2005	14.2%	32.6
2010	18.2%	37.3
2015	34.0%	50.8


Roth J et al ESMO 2017

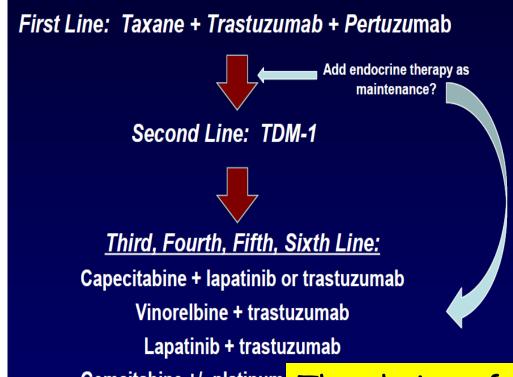
Trastuzumab altered the natural history

Treatment	Response rate	Time to Progression (months)	Median survival (months)
Chemotherapy	32%	4.6	20.3
Chemotherapy + Trastuzumab	50%	7.4	25.1
Difference	18%	2.8	4.8

Important trials to consider in the HER2 positive metastatic setting



Swain et al NEJM 2015
Phase III
No prior treatment for metastatic disease
PFS 12.4 m vs 18.7 m
HR 0.68 (p=<0.0001)
OS 40.8 m vs. 56.5 m

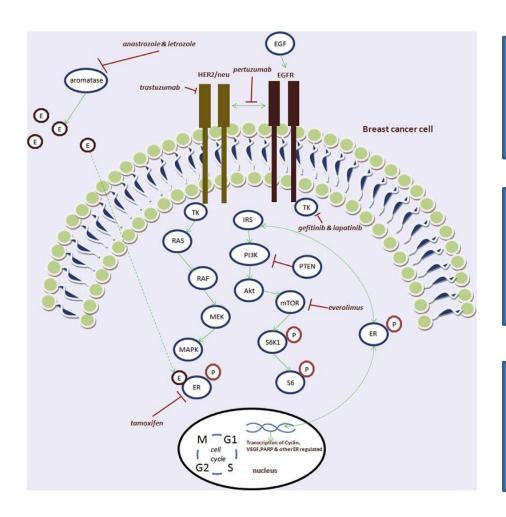

Verma et al NEJM 2012
Phase III
Prior taxane/trastuzumab
Progression on metastatic therapy
PFS 6.4 m vs 9.6 m
HR 0.65 (p=<0.0001)
OS 25.9 vs. 29.9m
HR 0.75 p =0.0003

Krop et al Lancet Oncol 2014, 2017
Phase III
>=2 prior anti HER2 lines of therapy
60% >= lines of therapy
PFS 3.3 m vs 6.2 m
HR 0.55 (p=<0.0001)
OS 15.8 m vs22.7 M
HR 0.677 (p=0.0007)

Anti HER2 therapies available today

Anti-HER2 Treatment:2018

For patients with ER+/HER2+ MBC, for whom CT+anti-HER2 therapy was chosen as 1st line therapy and provided a benefit, it is reasonable to use ET+ anti-HER2 therapy as maintenance therapy, after stopping CT, although this strategy has not been studied in randomized trials.


LOE;1 C Voters:39 Yes: 79% (31) Abstain: 10% (4)

ABC3, Annals of Oncology 2016

Gemcitabine +/- platinum
Other chemotherapy +

The choice of the anti-HER2 agent will depend on country-specific availability, the specific anti-HER2 therapy previously administered, and the relapse free interval.

Do all women with HER2 positive MBC require chemotherapy? Can we de escalate therapy? "Triple Positive" Disease

The ER and HER2 signalling pathways are deeply interconnected

ER signalling plays a role in resistance to anti-HER2 Therapy

The unexciting nature of the results of early ET/anti-HER2 Trials have made CT -based combinations a more common standard

HER2+HR+ MBC

Regimen	ORR, %	PFS, Mo
Anastrozole+trastuzumab(n=103) ¹	20 ^a	4.8
Anastrozole (n=104) ¹	7 ^a	2.4
Lapatinib+letrozole (n=111) ²	28	8.2
Letrozole (n=108) ²	15	3.0

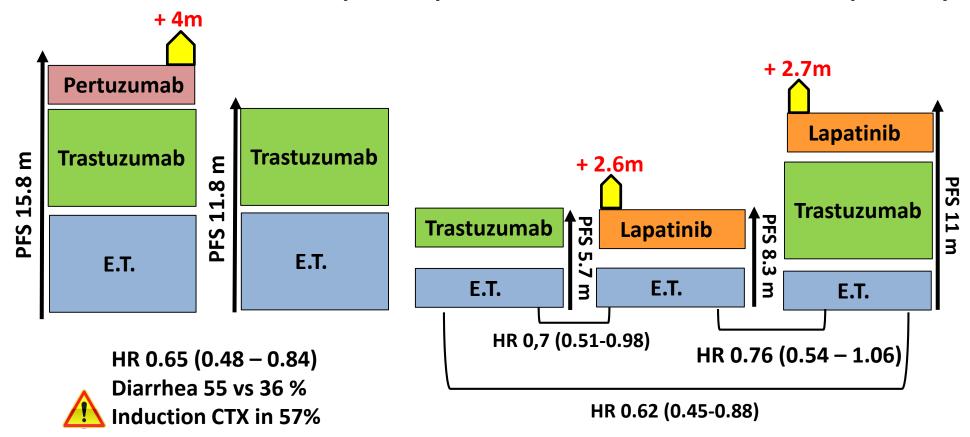
 Adding trastuzumab to endocrine therapy improved outcomes, presumably by eliminating the synergy between endocrine and HER2 signaling pathways.

•

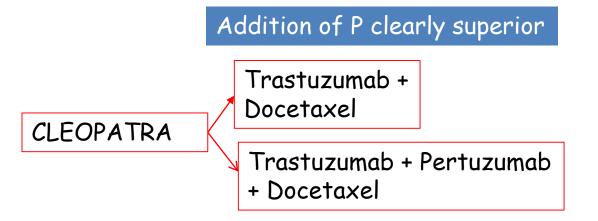
^{1.} Kaufman B, et al. J Clin Oncol 27(33): 5529, 2009

^{2.} Johnston S, et al J Clin Oncol 27(33): 5538, 2009

"Triple positive" Breast Cancer


Recent Randomized trials of endocrine therapy

combined with single or dual HER2 blockade Arpino G et al SABCS 2016 abstract S3-04 Gradishar et al ASCO 2017 abstract 1004


« FIRST LINE »

« SECOND+ LINE »

The « PERTAIN » trial (N=258) The « ALTERNATIVE» trial (N=355)

Questions in the first line setting

Swain et al NEJM 2015
Phase III
No prior treatment for metastatic disease
PFS 12.4 m vs 18.7 m
HR 0.68 (p=<0.0001)
OS 40.8 m vs. 56.5 m

Should we use endocrine therapy+dual blockade for ER+/HER2+ disease?

YES: PFS prolongation, less toxicity

NO: No OS benefit, response rates higher with THP

Consider in patients with limited tumor burden or those not considered candidates for chemotherapy.

New Strategies New Agents & New Combinations

directed at the cancer cell

New Drugs

New anti-HER TKIs (Neratinib, Tucatinib, Pyrotinib, Poziotinb)

Antibody Drug Conjugates (ADCs) (SYD-985, DS 8201)

New anti-HER Antibodies (Margetuximab, Panitumumab)

Bi-specific Antibodies (ZW-25, MCLA-128, GBR1302)

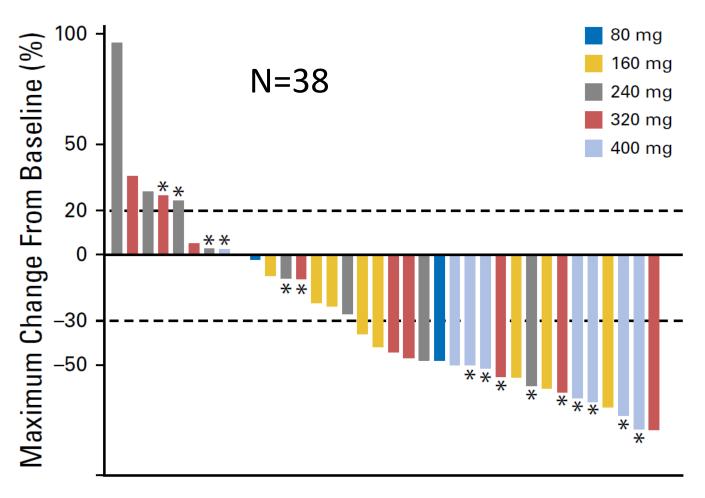
New Combinations

Anti-HER2 + mTOR Inhibitors

Anti-HER2 + PI3K Inhibitors

Anti-HER2 + CDK 4/6 Inhibitors

Anti-HER2 + anti-PD(L)1


Second/third generation of HER inhibitors Status of clinical development

Type of HER inhibitor HER1-2-4	<u>Drug</u> Neratinib (N)	Development phase	NALA (NCT01808573) trial of Cape+N vs Cape+L in third line has completed accrual! (n=600)
	•	1 1	
HER1-2-4	Afatinib (A)	────────────────────────────────────	(A) + vinorelbine not better than T + vinorelbine (2)
HER2	Tucatinib (T)	—————————————————————————————————————	Screening Cycle 2
HER1-2-4	Pyrotinib (Py)	——————————————————————————————————————	
HER1-2-4	Poziotinib (Po)	────────────────────────────────────	Single agent activity reported (6)

(12 mg poziotinib qd 14-day on/7-day off schedule)

⁽¹⁾ Awada A, JAMA Oncology 2016 2(12):1557-1564; (2) Harbeck H et al, Lancet Oncol 2016; 17 (3): 357-366; (3) Anders C et Al ASCO 2017 Abstracts TPS1107; (4) Murthi RK. et al SABCS 2015 P 4-14-19, (5) Ma, F e tal JCO 35 (27) 2017; (6) Park YH et al ESMO 2017 abstract 2370,

Phase I Study and Biomarker Analysis of Pyrotinib, a Novel Irreversible Pan-ErbB Receptor Tyrosine Kinase Inhibitor, in HER2+ Metastatic Breast Cancer

- Dose limiting toxicity: diarrhea.
- MTD 400 mg/day
- ORR=50%; CBR24w=61.1%
- ORR=33.3% in trastuzumab-treated
- ORR=83.3% in trastuzumab-naive

Ma et al. J Clin Oncol 2017

A randomized phase II trial of pyrotinib/capecitabine versus lapatinib/capecitabine in HER2+ metastatic breast cancer

R

Ν

O

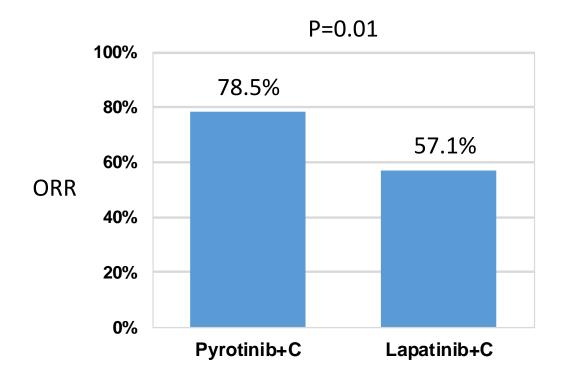
M

0

Ν

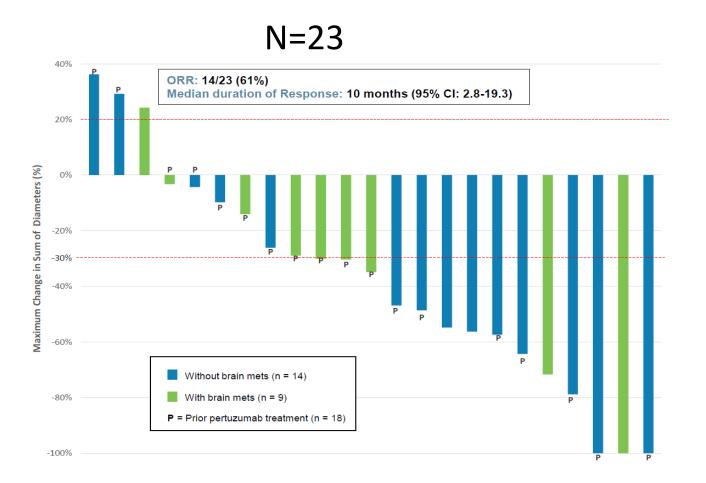
This is an open label, multicenter, randomized phase II trial.

- HER2 positive metastatic breast cancer
- Age 18 70 years
- Previously treated with taxanes and anthracyclines
- With/without prior trastuzumab
- ≤2 lines of chemotherapy for advanced disease
- Previous treatment with capecitabine within 6 months is not permitted
- Brain metastasis is not permitted
- Stratification: prior treatment with anti-HER2 monoclonal antibody (yes, no)
- Primary endpoint: overall response rate (ORR), as assessed by investigator


PC: Pyrotinib (P) + Capecitabine (C)
pyrotinib 400mg, qd, d1-21, q3wks
capecitabine 1000mg/m², bid, d1-14,
q3wks
until disease progression, intolerable
toxicity or withdrawal of consent

LC: Lapatinib (L) + Capecitabine (C)
Lapatinib 1250mg, qd, d1-21, q3wks
capecitabine 1000mg/m², bid, d1-14,
q3wks
until disease progression, intolerable
toxicity or withdrawal of consent

- Secondary endpoints:
 - Progression free survival (PFS)
- Time to progression (TTP)
- Duration of response (DoR)
- Overall survival (OS)
- Safety


Xu et al. SABCS 2017

A randomized phase II trial of pyrotinib/capecitabine versus lapatinib/capecitabine in HER2+ metastatic breast cancer

- Increased mPFS 18 vs. 7.0 months (HR=0.36 P<0.0001); irrespective of prior trastuzumab.
- Grade 3-4 toxicities higher in PC arm vs LC arm:
 - Hand-foot syndrome (24.6% vs 20.6%),
 - Diarrhea (15.4% vs 4.8%)
 - Decreased neutrophil (9.2% vs 3.2%)
 - Vomiting (4.6% vs 1.6%)
- Serious adverse events (SAEs): 7.7% vs. 6.3%.
- A Phase III trial is ongoing (NCT02973737).

A Phase 1b Study of Tucatinib (ONT-380) Combined With Capecitabine and/or Trastuzumab in HER2+ Metastatic Breast Cancer

- 300mg BID
- Encouraging anti-tumor activity seen in the triplet combination, in a heavily pre-treated population including those with brain mets
- ORR=61%; Median PFS=7.8m
- Median DOR=10 months
- Orphan drug designation by FDA for the treatment of BC brain metastases

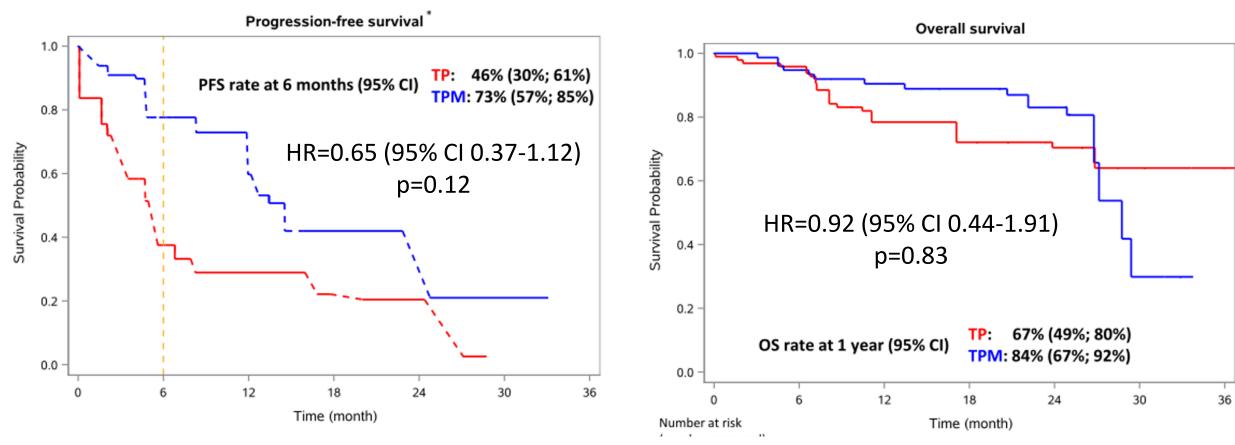
NCT02025192

Hamilton et al. SABCS 2016

EORTC 75111 – 10114 Trial Design

Primary endpoint: PFS rate at 6 months N = 80Pertuzumab + **HER2+ MBC Trastuzumab** PD **T-DM1** \geq 70 Years (or \geq 65/ \geq 60 \vee with co-morbidity) 1:1 No prior chemo for MBC Pertuzumab + (optional) ≤1 line of antiHER2 + endocrine therapy Trastuzumab + Prior endocrine therapy allowed Metronomic Stratification: ER and/or PR pos vs both negative, previous HE Cyclophosphamide R2 treatment (none vs adj only vs metastatic), G8< or equal 1

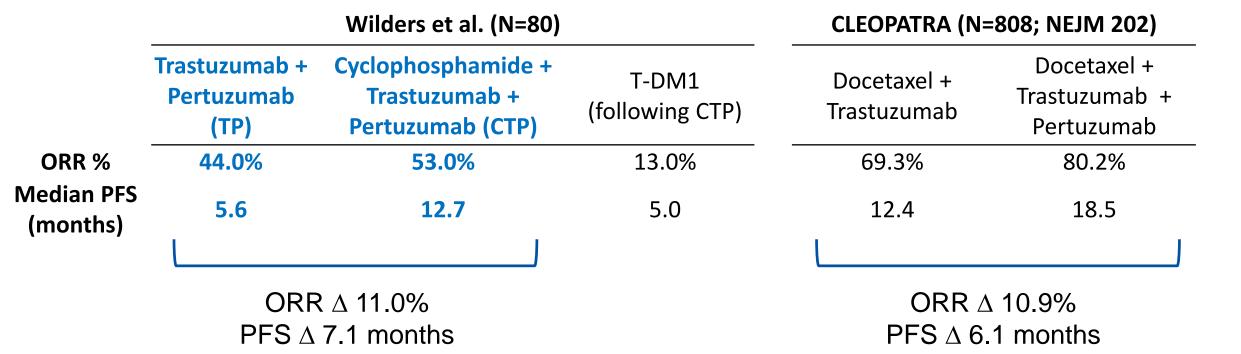
Metronomic CT (chemotherapy): cyclophosphamide 50 mg/d po continuously On progression: Option to have T-DM1 (3.6 mg/kg iv q3w) till progression


4 vs G8>14

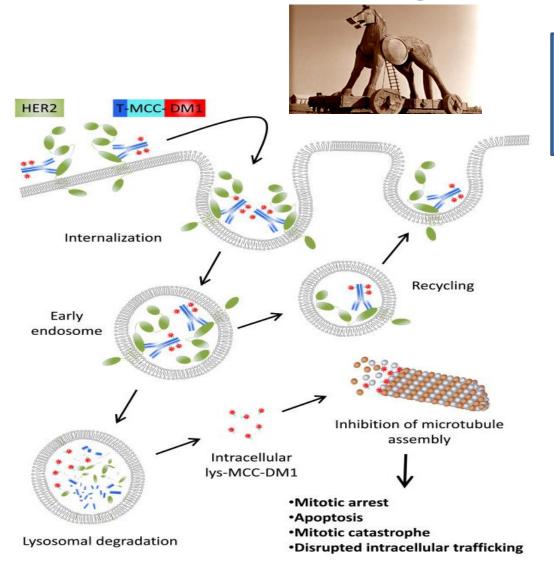
SABCS 2017 Wildiers et al ; Lancet Oncol 2017

EORTC 75111 – 10114 Patient Characteristics

	N (%)
Age (years) – Median (Range)	76.7 (61.4 - 91.4)
WHO PS 2-3	19 (23.8)
ER and/or PgR positive	55 (68.8)
No prior anti-HER2 therapy for MBC	72 (91.1)
Prior adjuvant endocrine therapy	24 (30.4)
Visceral involvement	74 (93.3)
G8 score at baseline G8 ≤ 14	56 (70.9)
Frail (SPPB ≤ 7) Short physical performance battery	37 (52.9)

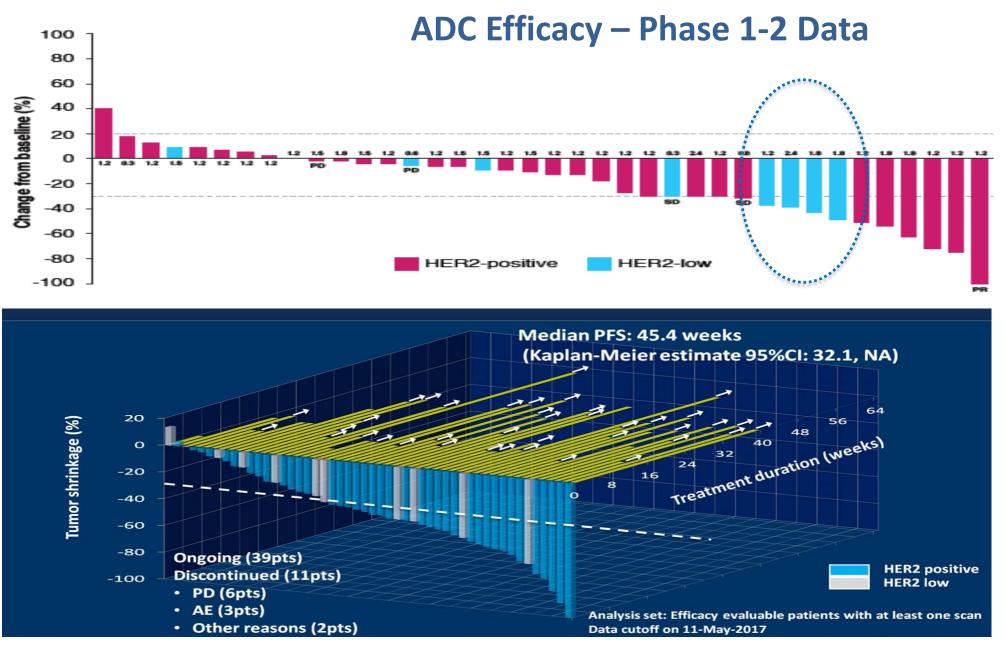

EORTC 75111 – 10114 Trial Design

Median PFS was 5.6 months (95% CI 3.6-16.8) versus 12.7 months (95% CI 6.7-24.8)


SABCS 2017 Wildiers et al; Lancet Oncol 2017 in Press

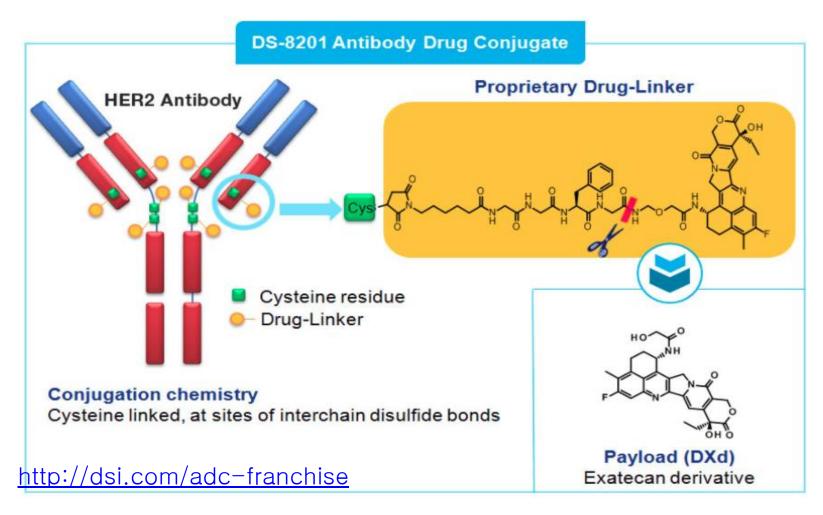
EORTC 75111 – 10114 vs. CLEOPATRA

- Lower median PFS with CTP than in taxane + TP (12.7 vs. 18.5 months)
- Adding cyclophosphamide achieves a similar magnitude of clinical benefit as pertuzumab on top of taxane + trastuzumab.
- T-DM1 might help prolong progression in second-line in this elderly population.
- More clinical trials are needed in elderly and/or frail patients!


New Strategies : New Antibody Drug Conjugates

The success of T-DM1 has created a lot of excitement around ADCs

Drug Name	Antibody	Chemotherapy
MM - 302 ²	Humanized anti-HER2 antibody	Liposomal doxorubicin
DS – 8201a ³	Humanized anti-HER2 antibody	Exatecan
SYD- 0985 ⁴	Trastuzumab	Duocarmycin
XMT - 1522 ⁵	HT-19 (Humanized anti-HER2 antibody)	Auristatin
MEDI 4276 ⁶	Bispecific anti-HER2/HER2 antibody	Tubulysin


1. Barok M. Breast Cancer Res. 2014; 16(2): 209; 2. Espelin CW et al Cancer Res 2016 76(6):1517-27; 3. Ogitani Y et Al Clin Cancer Res 2016 22 (20) 5097-5108; 4. Dokter W. et al Mol Cancer Ther 2014;13(11): 2618–29; 5. Bergstrom DA et al AACR Abstract 6716; 6. Li J et al Abstract 2970

1. Aftimos P et al SABCS 2016 P6-12-02; 2. Doi T et al ASCO 2017 Abstract 108

Trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody-drug conjugate

- Highly potent: Drug-to-antibody ratio = 7.8 vs 3.5 for T-DM1.
- Topoisomerase I inhibitor vs. tubulin inhibitor (T-DM1)
- Preclinically, DS-8201a has a potent bystander effect due to a highly membrane-permeable payload

Ogitani Y et al. Cancer Sci 2016 Marcoux-J et al. Protein Sci 2015

Safety, pharmacokinetics, and antitumor activity of DS-8201 in advanced breast/gastric cancer: a Phase 1 study

- No dose-limiting toxic effects or deaths.
- ORR=43%; DCR=91%
- Responses observed at higher doses
- Antitumor activity observed in previously treated with T-DM1 or trastuzumab, and in patients with HER2-low tumors

Doi et al. Lancet Oncol 2017

Safety and efficacy results from a phase 1 study of DS-8201a in patients with HER2+ breast cancers

TABLE 3. Efficacy - Confirmed ORR, DCR, and PFS

Population	ORR, n/N (%)	DCR, n/N (%)*	PFS (months), median (range) [†]
HER2-positive			
All	35/57 (61.4)	54/57 (94.7)	10.4 (1.2+, 16.8+)
HR-positive	22/39 (56.4)	36/39 (92.3)	NR (1.2+, 16.8+)
HR-negative	12/16 (75.0)	16/16 (100.0)	10.4 (1.2+, 14.1+)
Prior pertuzumab-treated	31/50 (62.0)	47/50 (94.0)	10.3 (1.2+, 16.8+)
HER2-low			
All	6/19 (31.6)	16/19 (84.2)	NR (0.5, 12.2+)
HR-positive	5/16 (31.3)	14/16 (87.5)	NR (1.2+, 12.2+)
HR-negative	0/2 (0.0)	1/2 (50.0)	7.6 (0.5, 7.6)

^{*}Analysis set for ORR (CR+PR) and DCR (CR+PR +SD): efficacy evaluable for confirmed overall response, at least 2 postbaseline scans or progressive disease at the first scan.

N=130 (76 evaluable)

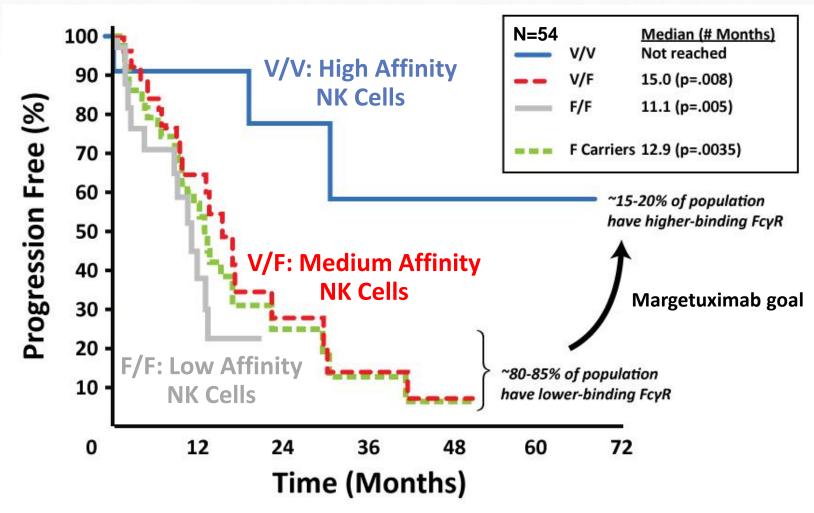
- The dose levels of 5.4 and 6.4 mg/kg IV every 3 weeks were chosen for Part 2.
- Grade 3 toxicities occurred in
 <10% of the patients.
- Most frequent grade 3 toxicity was nausea.

[†]Minimum and maximum of PFS include "+" after value indicates censoring.

CR, complete response; DCR, disease control rate; HER2, human epidermal growth factor receptor 2; HR, hormone receptor; NR, not recorded; ORR, objective response rate; PFS, progression-free survival; SD, stable disease.

A Phase 2, Multicenter, Open-Label Study of DS-8201a in HER2+ Metastatic Breast Cancer Resistant/Refractory to T-DM1 (DESTINY-Breast01)

PART 1 (N=120)

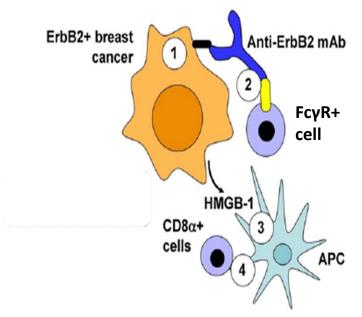

- N = 230
- Primary objective: ORR
- Men or women
- •Unresectable or metastatic
- •HER2 positive expression
- •≥1 measurable lesion

High dose 7.4 mg/kgFinal dose in T-DM1 Resistant/refractory (n=100)Intermediate dose 6.4mg/kg Final dose in T-DM1 intolerant (n=10) Low dose 5.4mg/kg

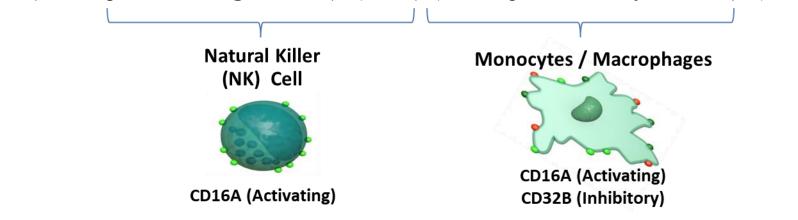
PART 2 (N=110)

NCT03248492

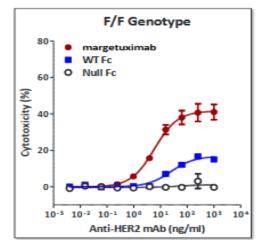
Trastuzumab Progression-Free Survival ~ CD16A (FcγRIIIA) genotype

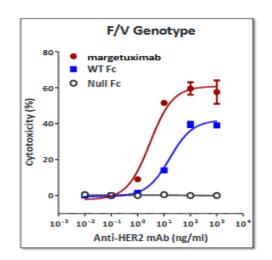

Better Outcomes in Patients with Sticky Natural Killer Cells (CD16A V/V)

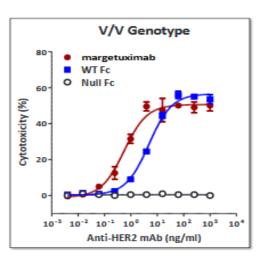
Musolino et al., J Clin Oncol 26: 1789-96 (2008)



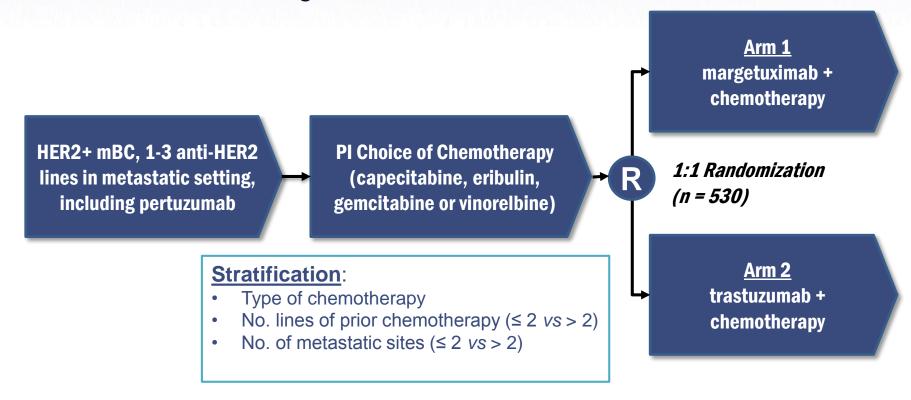
New Strategies


New Anti-HER Antibodies - Margetuximab




- Optimized IgG1 Fc domains: 5 amino acid substitutions
 - ↑ binding to **activating CD16A** (FcγRIIIA); ↓ binding to **inhibitory CD32B** (FcγRIIB)

Enhanced ADCC of the Fc optimized chimeric Mab Margetuximab, irrespective of the FcyR isoform



SOPHIA Study to Establish Superiority Over Trastuzumab

Phase 3 – Randomized Trial of Margetuximab in Third-Line Metastatic Breast Cancer

Sequential Primary Endpoints:

Progression-Free Survival (PFS, N=257, HR=0.67, α =0.05, power=90%) **then Overall Survival** (OS, N=385, HR=0.75, α =0.05, power=80%)

New Strategies New Agents & New Combinations directed at the cancer cell

New Drugs

New anti-HER TKIs (Neratinib, Tucatinib, Pyrotinib, Poziotinb)

Antibody Drug Conjugates (ADCs) (SYD-985, DS 8201)

New anti-HER Antibodies (Margetuximab, Panitumumab)

Bi-specific Antibodies (ZW-25, MCLA-128, GBR1302)

New Combinations

Anti-HER2 + mTOR Inhibitors

Anti-HER2 + PI3K Inhibitors

Anti-HER2 + CDK 4/6 Inhibitors

Anti-HER2 + anti-PD(L)1

ClinicalTrials.gov

Strategies antagonizing the Pi3K-mTOR pathway The first generation of trials

First line

Second line

Later line

Taxane

+

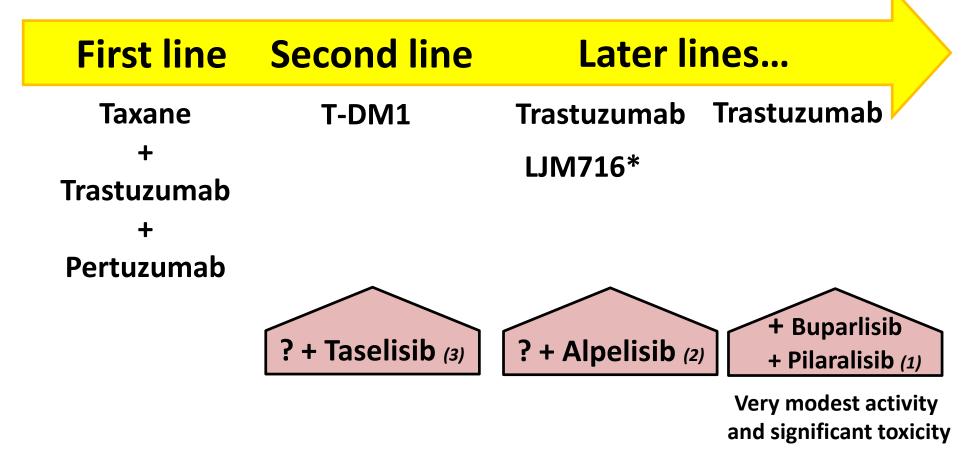
Trastuzumab

Vinorelbine

+

Trastuzumab

? + Everolimus

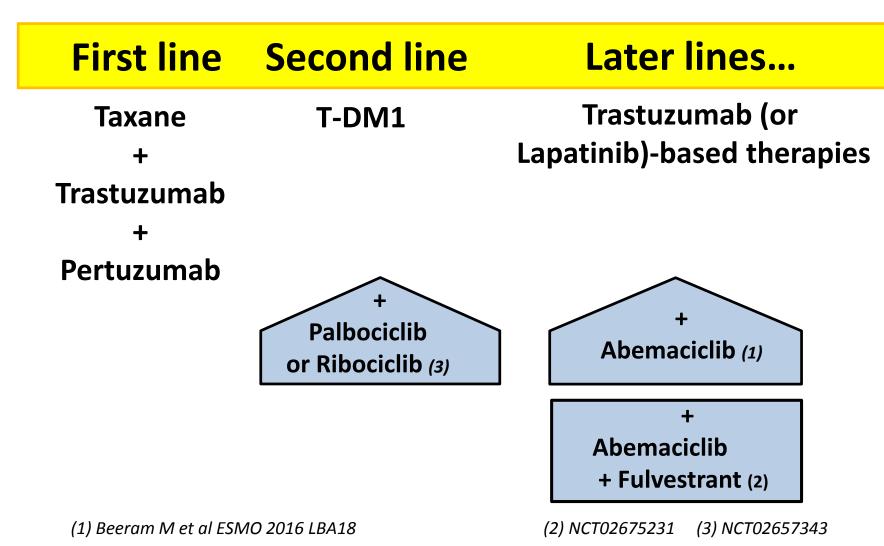

Bolero-1 trial (1)

Negative trial

(Signal in HR- subgroup)

Bolero-3 trial (2) Marginal 个 PFS

Strategies antigonizing the Pi3K-mTOR pathway The second generation of trials

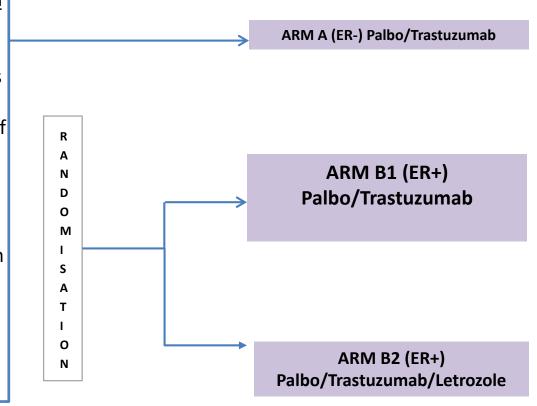

*anti-HER3 antibody

(1) Tolaney S et al. Breat Cancer Res Treat 2015 149 (1) 151-161; (2) NCT02167854 (3) Metzger O et al ASCO 2017

New Strategies CDK 4/6 and anti-HER2 Resistation **TRASTUZUMAB** LAPATINIB Cytoplasm **PALBOCICLIB** RIBOCICLIB TSC₂ ABEMACICL mTORC1 Rb E2F cell cycle progression

Corona SP et al Crit Rev in Oncol/Hematol 2017 112: 208-2014; Goel S et al Cancer Cell 2016 29 (3):255-269

Advanced HER2+ Breast Cancer: New strategies incorporating CDK4-6 inhibitors


New Strategies

Palbociclib - Phase 2 PATRICIA Design

BOTH ER- (Arm A) and ER+ (B & C arms)

Patient Population

- •HER2+ locally advanced/MBC
- 2-4 previous lines of treatment
- at least 2 forms of anti-HER2 therapy
- At least one taxane or capecitabine containing regimen
- •Tumour samples for biomarker research (preferably from metastasis)

Endpoints

Primary

• PFS at 6 months

Secondary

- CBR
- ORR
- PFS
- Safety
- OS
- Biomarker of response based on 110 genes expression panel

Palbociclib regimen: 200mg 14 days/7 days rest

What's New in 2017 (immunotherapy)

2016 2017 2018

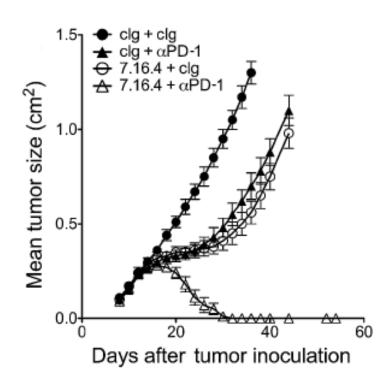
KEYNOTE-12 (Nanda et al, JCO 2016) **JAVELIN** (Dirix et al, Breast Ca Res Treat 2017)

Multiple phase 1/2 IO + chemo reported/ongoing

KEYNOTE-110 accrual completed

IMpassion-130 accrual completed

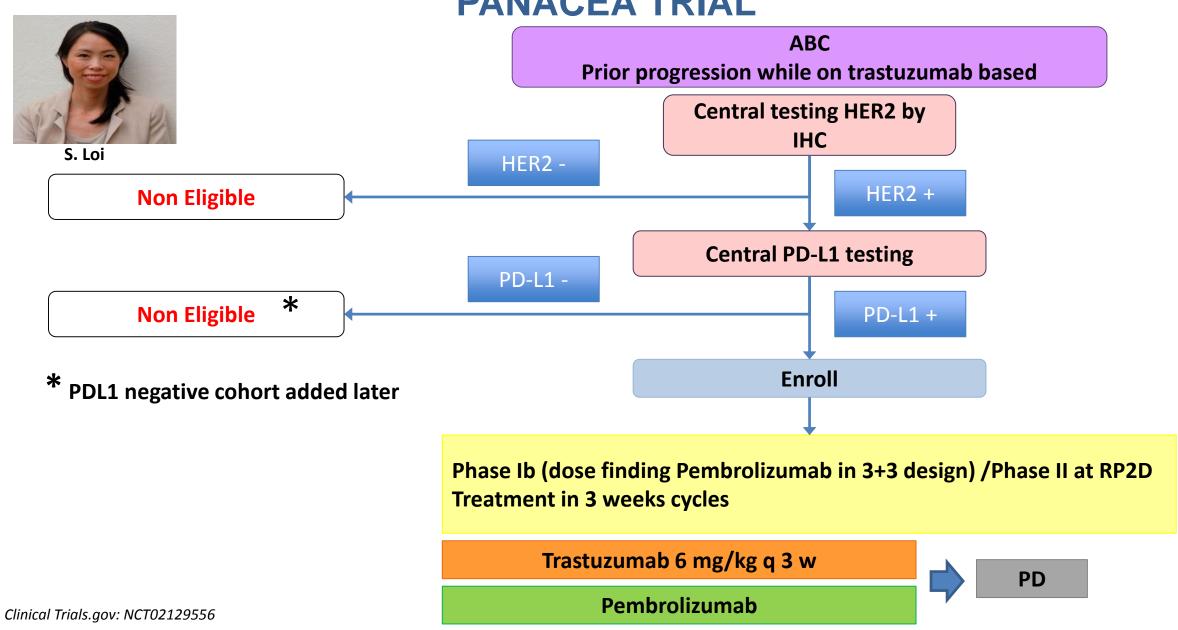
I-SPY2 (preop ER+/TNBC; Nanda et al ASCO 2017)


PANACEA (Loi et al, SABCS 2017)

IO combinations

IO + targeted tx

Background: Anti-tumor immunity & HER2-positive breast cancer


- HER2-positive breast cancer has high levels of T cell infiltration
- TILs are associated with improved prognosis and response to trastuzumab and chemotherapy^{1,2}
- Trastuzumab has been shown to have immune mediated mechanisms of action^{3,4}
- Preclinical studies suggest immune-mediated mechanisms of trastuzumab resistance that can be overcome with checkpoint inhibition combinations⁵

Anti-PD(L) 1 Strategies explored in advanced HER2+ BC

First line **Second line Later line Taxane** T-DM1 Trastuzumab Trastuzumab Pertuzumab + anti PD(L) 1 ? + anti PD(L) 1 ? + anti PD(L) 1 Pembrolizumab (5) Atezolizumab (3) Pembrolizumab (1) Atezolizumab (6) Pembrolizumab (4) Durvalumab (2)

New Strategies PANACEA TRIAL

Baseline Characteristics

Characteristic N (%)	Phase Ib PD-L1 positive; n=6	Phase II PD-L1 positive; n=40	Phase II PD-L1 negative; n=12	Overall n=58
Age yrs. median (range)	49 (38-57)	49 (28-72)	56.5 (43-61)	50.5 (28-72)
ER negative positive (≥ 1%)	4 (66%) 2 (33%)	23 (57.5%) 17 (42.5%)	6 (50%) 6 (50%)	33 (56.9%) 25 (43.1%)
Prior trastuzumab-containing therapy	6 (100%)	40 (100%)	12 (100%)	58 (100%)
Additional anti-HER2 therapy				
No	1 (16.7%)	6 (15%)	0 (0%)	7 (12.1%)
Yes	5 (83.3%)	34 (85%)	12 (100%)	51 (87.9%)
T-DM1	4	29	9	42
Pertuzumab	3	10	4	17
Other	1	17	8	26
Prior chemotherapy (Anth/Taxane)	6 (100%)	40 (100%)	12 (100%)	58 (100%)
Median time from Dx met disease to enrolment; months (range)	15.5 (6-83.6)	40.8 (1.1-111)	71.5 (9.9-179.1)	40 (1.1-179.1)

Best Overall Response (RECIST 1.1)

	PD-L1 Positive Phase Ib, n=6	PD-L1 Positive Phase II, n=40	PD-L1 Negative Phase II, n=12
ORR n (%) [90%CI]	1 (17%) [1-58]	6 (15%) [7-29]	0 (0%) [0-18]
DCR ¹ n (%) [90%CI]	1 (17%) [1-58]	10 (25%) [14-49]	0 (0%) [0-18]
Best overall response, n (%)			
Complete Response	1 (17%)	1 (2.5%)	_
Partial Response	-	5 (12.5%)	-
Stable Disease	-	7 (17.5%)	2 (16.7%)
Progressive Disease	5 (83%)	25 (62.5%)	9 (75.0%)
Not Evaluable	-	2 (5.0%)	1 (8.3%)

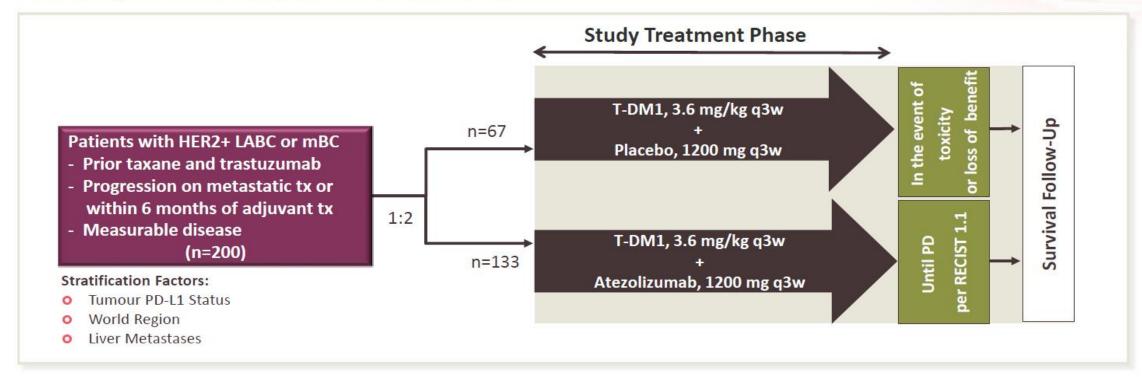
Overall PD-L1 + cohort

ORR 15.2% [7-27]

DCR 25% [14-36]

PD-L1: assessed centrally by Merck
QualTek PD-L1 IHC Assay changed to 22C3 Q² Solutions
Positive was QualTek ≥1% tumor or stroma; Q^{2:} CPS ≥1%

¹DCR: CR, PR, or SD ≥ 6 months


PANACEA Trial: Summary and Conclusions

- PANACEA study of pembrolizumab with trastuzumab in trastuzumab-resistant mHER2+ patients met its primary endpoint in the PD-L1 positive cohort (ORR 15%, DCR 25%)
 - No responses observed in PD-L1 negative patients
 - Stromal TIL levels associated with responses: sTILs ≥ 5% patients (ORR 39%, DCR 47%)
 - For responders: combination offers durable control without chemotherapy
- Metastatic HER2+ disease in the heavily pretreated setting is poorly immunogenic (majority of patients had low TILs in their metastatic lesions)
- Future directions in IO in mHER2+ should focus on combinations with effective anti-HER2 therapy, especially in low TIL patients

KATE2 Study Overview

DESIGN: PHASE II | DOUBLE-BLIND | MULTICENTRE | RANDOMIZED | PLACEBO-CONTROLLED

Total study duration: 28 months – Recruitment: 9 months

Concluding Remarks

The next decade will see numerous drugs & combinations come to Phase III (and hopefully clinical practice).

Coming together is a beginning Keeping together is progress Working together is success - Henry Ford-

